
Godavari Foundationôs

Godavari College of Engineering, Jalgaon

Department of Computer & I.T.

Lab Manual
Software Metrics & Quality Assurance

Practical No:- ____

 Date:-_________

Name of Student:- ___

Class:-___________ Roll No:-_____

Title : -

__

__

Aim: -

__

__

__

__

Software Requirement: ___

Hardware Requirement:- ___

Theory:-

 In the 1970 Barry Boehm investigated data from a large set of project at TRW,

a consulting firm based in California. Using this data , he derived the constructive cost

model(COCOMO).

Original COCOMO : effort

 The original COCOMO is actually a collection of three models: a basic

model that can be applied when little about the project is known, an intermediate model

that is applied after requirement , and an advanced model that is applied when design is

complete .all three take the same form,

 E=ὥὛ F

 Where E is effort in a person months, S is size measured in thousands of

delivered source instruction , and F is an adjustment factor. The values of a and b, depend

on the development mode, determine by the type of software under construction . An

organic system involve data processing :it tends to use database and focus on transaction

and data retrieval . A banking or accounting system is usually organic. An embedded

system contains real-time software that is an integral part of larger, hardware based

system. For example ,a missile guidance system or water temperature sensing system are

embedded. A semi-detached system is somewhere between organic and embedded .

 By selecting a development mode and applying the appropriate effort

equation, COCOMO yields a preliminary estimate of effort.

Example : To predict the effort required to implement the software for a major

telephone switching system, we are told that the system will require approximately 5000

KDSI. The software is embedded, since it is a real-time system that is part of a large,

complex hardware system. The initial effort estimate using COCOMO is :

 E = 3.6 υπππȢ

Or approximately 100 000 person months of effort.

Original COCOMO : duration

 To see how COCOMO predicts duration, suppose that we have estimate the

effort for an embedded project to be E person months. For estimating duration,

COCOMO contains a constraint model that predicts elapsed time from effort. The

duration model has a form similar to the effort model, namely :

 D = aὉ

Where D is duration in months, and E is effort in person months. The coefficient and

exponent depend on the development mode, as shown in table.

 The duration equation is intended to give the optimal estimate of project

duration for a given effort. A cost driver assesses the effect of artificially reducing or

increasing project duration, so that total project effort changes accordingly when project

duration is decreased or increased in comparison to the optimal value.

Example : The development time for a 3000 person month embedded project is predicted

by COCOMO to be :

 2.5σπππȢ = 52 months

Thus, we can calculate that the project requires 58 staff working for 52 months to

complete the software.

Algorithm :-

1: Start

2: Read the choice from user

 Choice 1-> For Organic

 Choice 2-> For Semi Detached

 Choice 3-> For Embedded

 Choice 4-> For Exit

3: Check Choice

 If choice is 1 then goto step 4

a) Print the Effort for Organic System

b) Print the Duration for Organic System

 If choice is 2 then goto step 4

a) Print the Effort for Semi Detached System

b) Print the Duration for Semi Detached System

 If choice is 3 then goto step 4

a) Print the Effort for Embedded System

c) Print the Duration for Embedded System

4: Call The Function

a) Calculate Effort

E=aS
b

b) Calculate Duration

D=aE
b

5: Stop

Source Code:-

import java.io.*;

import java.util.*;

class EffortDuration

{

 int S,E;

 float a,b,f;

 EffortDuration()

 {

 S=5000;

 E=3000;

 }

 float getEffort(float a1, float b1)

 {

 a=a1;b=b1;

 float E1=(float)Math.pow(S,b);

 f=a*E1;

 return f;

 }

 float getDuration(float a1, float b1)

 {

 a=a1;b=b1;

 float D1=(float)Math.pow(E,b);

 f=a*D1;

 return f;

 }

}

class COCOMO

{

 public static void main(String args[])

 {

 int ch;

 float E,D;

 do

 {

 System.out.println("\n1. Organic\n2. Semidetached");

 System.out.println("3.Embedded\n4.Exit");

 Scanner s1=new Scanner(System.in);

 ch=s1.nextInt();

 switch(ch)

 {

 case 1:

 EffortDuration EDorg= new EffortDuration();

 E=EDorg.getEffort(2.4f,1.05f);

 D=EDorg.getDuration(2.5f,0.38f);

 System.out.println("\nEffort for Organic System\t"+E);

 System.out.println("\nDuration for Organic System\t"+D);

 break;

 case 2:

 EffortDuration EDsemi= new EffortDuration();

 E=EDsemi.getEffort(3.0f,1.12f);

 D=EDsemi.getDuration(2.5f,0.35f);

 System.out.println("\nEffort for Semidetached System\t"+E);

 System.out.println("\nDuration for Semidetached System\t"+D);

 break;

 case 3:

 EffortDuration EDemb= new EffortDuration();

 E=EDemb.getEffort(3.6f,1.20f);

 D=EDemb.getDuration(2.5f,0.32f);

 System.out.println("\nEffort for Embedded System\t"+E)

 System.out.println("\nDuration for Embedded System\t"+D);

 break;

 case 4:

 System.exit(0);

 default:

 System.out.println("\nEnter correct choice:-\t");

 }

 }while(ch!=4);

 }

}

 Output :-

D:\SMQA>java COCOMO

1. Organic

2. Semidetached

3.Embedded

4.Exit

1

Effort for Organic System 18370.863

Duration for Organic System 52.389717

1. Organic

2. Semidetached

3.Embedded

4.Exit

2

Effort for Semidetached System 41683.836

Duration for Semidetached System 41.203342

1. Organic

2. Semidetached

3.Embedded

4.Exit

3

Effort for Embedded System 98870.49

Duration for Embedded System 32.405506

1. Organic

2. Semidetached

3.Embedded

4.Exit

4

D:\SMQA>

Conclusion:-

__

__

Godavari Foundationôs

Godavari College of Engineering, Jalgaon

Department of Computer & I.T.

Lab Manual
Software Metrics & Quality Assurance

Practical No:- ____

 Date:-_________

Name of Student:- ___

Class:-___________ Roll No:-_____

Title : -

__

__

Aim: -

__

__

__

__

Software Requirement: ___

Hardware Requirement:- ___

Theory:-

Length-

 There are three major development products whose size would be useful to know

the specification, the design, and the code. Measuring the length of the specification can

be a useful indicator of how l9ong the design is likely to be, which in turn a predictor of

code length is. Similarly, length of the early products may indicate the amount of effort

needed for production of the later ones.

Code-

 Code can be produced in several ways. The most traditional approach is to use a

procedural language. But there are other alternatives, such as object orientation and visual

programming that make traditional measurement difficult.

Traditional code measures-

 The most commonly used measure of sources code program length is the number

of lines of code (LOC). But some lines of code are different from others. For example,

many programmers use spacing and blank lines to make their programs easier to read. If

lines of code are being used to estimate programming effort, then a blank line does not

contribute the same amount of effort as a line implementing a difficult algorithm.

Similarly comment lines improve a programôs understand ability, and they certainly

require some effort to write. But they may not require as much effort as the code itself.

Many different schemes have been proposed for counting lines, each defined with a

particular purpose in mind, so there are many ways to calculate lines of code for a given

program. Without a careful model of a program coupled with a clear definition of a line

of code. Confusion reigns, we must take great care to clarify what we are counting and

how we are counting it. In particular, we must explain how each of the following is

handled-

¶ Blank lines

¶ Comment lines

¶ Data declaration

¶ Lines that contain several separate instructions

The Hewlett-Packard definition of a line of code is that most widely accepted. To stress

the fact that a line of code according to this definition is actually a non-commented line,

we use the abbreviation NCLOC, sometimes also called effective lines of code (ELOC).

The model associated with this definition views a program as a simple file listing, with

comments and blank lines removed.

As a comprise, we recommend that the number of comment lines of program text

(CLOC) be measured and recorded separately. Then we can define:

 Total length (LOC) = NCLOC+CLOC

And some useful indirect measures follow. For example, the ratio

 CLOC/LOC

Measures the density of comments in a program, giving an indications of the extent to

which it is self-documented.

Algorithm :-

1. Include header files

2. Declare variables

3. Enter the file name

4. Open the file in read mode

5. If(fp==NULL)

Then file does not exist

6. Else print file open successfully

7. Get character from a file in variable C

8. If(C==ô\nô) then loc++

While EOF each

9. Seek the location using fseek function

10. While (!eof(fp))

a. Get a character from file

b. If(C==ô\nô && (c=fgetc(fp)==ô\nô)then loc-

c. Else if(C=ô1ô)

If(c==ô*ô) then loc-

While(C!=ô1ô)

d. Else if(C==ônô)

While(C!=ô\nô)

i. Get character from file

ii. Loc C-

11. Exit from the if

12. Exit from the if

13. End of while loop

14. Print the loc or length of code

15. Exit

16. Stop

Source Code:-
#include<stdio.h>

#include<conio.h>

void main()

{

 FILE * fp;

 int loc=1,comment=0,comment1=0,blank=0,curly=0;

 char fname[20],c;

 clrscr();

 printf("\n\n Enter the file name : ");

 scanf("%s",fname);

 fp=fopen(fname,"r");

 if (fp==NULL)

 {

 printf("File does not exist ");

 getch();

 exit(0);

 }

 else

 printf("File open successfully");

 printf("\n****************** \n");

 do

 {

 c=fgetc(fp);

 printf("%c",c);

 if(c=='\n')

 loc++;

 }while(!feof(fp));

 fseek(fp,0,SEEK_SET);

 printf("\nTotal no. of lines = %d\n",loc);

 while(!feof(fp))

 {

 c=fgetc(fp);

 if(c=='\n' && (c=fgetc(fp))=='\n')

 {

 // printf("\nBlank Line");

 loc--;

 blank++;

 }

 else if(c=='{' || c=='}')

 {

 loc--;

 curly++;

 }

 else if(c=='/')

 {

 c=fgetc(fp);

 if(c=='*')

 {

 do

 {

 c=fgetc(fp);

 //printf("%c",c);

 if(c=='\n')

 {

 loc--;

 comment++;

 }

 }while(c!='/');

 if(fgetc(fp)=='\n')

 {

 loc--;

 comment++;

 }

 }

 else if(c=='/')

 {

 c=fgetc(fp);

 while(c!='\n')

 {

 c=fgetc(fp);

 }

 loc--;

 comment1++;

 }

 }

 }

 printf("\nSingle line Comment = %d",comment1);

 printf("\nMulti Line Comment = %d",comment);

 printf("\nBlank Lines %d",blank);

 printf("\nCurly braces %d",curly);

 printf("\n\nTotal Lines Without Comment,Blank Line, Curly = %d",loc);

 getch();

}

Output :-

File open successfully

/* A Simple Program*/

/*Program for printing*/

// Include header files

#include<stdio.h>

#include<conio.h>

{

// Declare the variables

int a=10;

/* Print the values

get the character*/

printf("%d",a);

getch();

}

Total no. of lines = 15

Single line Comment = 2

Multi Line Comment = 4

Blank Lines 2

Curly braces 2

Total Lines Without Comment,Blank Line, Curly = 5

Conclusion:-

__

__

Godavari Foundationôs

Godavari College of Engineering, Jalgaon

Department of Computer & I.T.

Lab Manual
Software Metrics & Quality Assurance

Practical No:- ____

 Date:-_________

Name of Student:- ___

Class:-___________ Roll No:-_____

Title : -

__

__

Aim: -

__

__

__

__

Software Requirement: ___

Hardware Requirement:- ___

Theory:-

To compute the number of function points, FP, we first compute an unadjusted function

point count, UFC. To do this, we determine from some representation of the software the

number of items of the following types:

¶ External inputs: those items provided by the user that describe distinct application

oriented data (such as file names and menu selections). These items do not include

inquiries, which are counted separately.

¶ External output: those items provided to the user that generate distinct application

oriented data (such as reports and messages, rather than the individual components

of these).

¶ External inquiries: interactive inputs requiring a response.

¶ External files: machine readable interfaces to other systems.

¶ Internal files: logical master files in the system.

To continue the unadjusted function point count from this description, we can identify the

following issues:

¶ The two external inputs: documentation file name, personal dictionary name.

¶ The three external outputs: misspelled word report, number of words processed

message, number of error far message.

¶ The two external inquires: words processed, errors so far.

¶ The two external files: document file, personal dictionary.

¶ The one internal file: dictionary.

Next each item is assigned a subjective ñcomplexityò rating on a three point ordinal scale:

ñsimpleò, ñaverageò, or ñcomplexò. Then, a weight is assigned to the item.

In theory, there are 15 different varieties of items (three levels of complexity for each of

the five types), so we can compute the unadjusted function point count by multiplying the

number of items in a variety by the weight of the variety and summing over all fifteen:

UFC = В .ÕÍÂÅÒ ÏÆ ÉÔÅÍÓ ÏÆ ÖÁÒÉÅÔÙ É ×zÅÉÇÈÔ É

A=#external inputs=2, B=#external outputs=3, C=#inquires=2, D=#external files=2,

E=#Internal files=1

Each component or sub-factor in the table is rated from 0 to 5, where 0 means being

means the sub-factor is irrelevant, 3 means it is average, and 5 means it is essential to the

systems being built. Although these integer ratings form an ordinal scale, the values are

used as if they were a ratio scale.

The following formula combines the 14 ratings into a final technical complexity factor:

TCF = 0.65 + 0.01В &É

This factor varies from 0.65 (if each Fi is set to 0) to 1.35 (if each Fi is set to 5). The final

calculation of function points multiplies the unadjusted function-point count by the

technical complexity factor:

 FP = UFC*TCF

Table:- Function point complexity weights

Table:- Components of the technical complexity factor

Ex: To continue our function-point computation for the spelling checker, we evaluate the

technical complexity factor. After having read the specification, it seems reasonable to

assume that F3, F5, F9, F11, F12 and F13 are 0, that F15, F2, F6, F7, F8 and F14 are 3,

and that F4 and F10 are 5. Thus we calculate the TCF as

 TCF = 0.65 + 0.01(18 + 10) = 0.93

Since UFC is 63, then

 FP = 63 * 0.93 = 59

Algorithm :-

1: Start

2: Print the given data(default values) by considering simple, average & complex mode.

3: Calculate Technical Compexity Factor

 TCF=0.65+(0.01*fi)

4: Read the choice from user

 Choice 1-> For simple mode

 Choice 2-> For average mode

 Choice 3-> For Complex mode

5: Check Choice

 If choice is 1 then goto step 6

 If choice is 2 then goto step 7

 If choice is 3 then goto step 8

6: // For Simple mode

c) Calculate Unadjusted function count

UFC=(3*A+4*B+3*C+7*D+5+7*E)

d) Calculate Function Point

FP=UFC*TCF

e) Print the values of Unadjusted function count, Technical Complexity Factor,

Function Point.

7: // For Average mode

a) Calculate Unadjusted function count

UFC=(4*A+5*B+4*C+10*D+7*E)

b) Calculate Function Point

FP=UFC*TCF

c) Print the values of Unadjusted function count, Technical Complexity Factor,

Function Point

8:// For Simple mode

a) Calculate Unadjusted function count

UFC=(6*A+7*B+8*C+15*D+10*E)

b) Calculate Function Point

FP=UFC*TCF

c) Print the values of Unadjusted function count, Technical Complexity Factor,

Function Point

9: Stop

Source code:-

import java.io.*;

import java.util.*;

class FunctionPoint

{

 public static void main(String args[])

 {

 int A=2,B=3,C=2,D=2,E=1;

 double UFC,TCF,FP;

 int F1=3,F2=3,F3=0,F4=5,F5=0,F6=3,F7=3,F8=3;

 int F9=0,F10=5,F11=0,F12=0,F13=0,F14=3;

 int sumFi,ch;

 sumFi=F1+F2+F3+F4+F5+F6+F7+F8+F9+F10+F11+F12+F13+F14;

 TCF=0.65+0.01*sumFi;

 do

 {

System.out.println("1. Simple\t2.Average\t3.Complex\t4.Exit\n");

 System.out.println("Enter your choice:-\t");

 Scanner in=new Scanner(System.in);

 ch=in.nextInt();

 switch(ch)

 {

 case 1:

 UFC=3*A+4*B+3*C+7*D+5*E;

 FP=UFC*TCF;

 System.out.println("\nUFC count for Simple\t"+UFC);

 System.out.println("\nTCF count for Simple\t"+TCF);

 System.out.println("FP count for Simple\t"+FP);

 break;

 case 2:

 UFC=4*A+5*B+4*C+10*D+7*E;

 FP=UFC*TCF;

 System.out.println("\nUFC count for Average\t"+UFC);

 System.out.println("\nTCF count for Average\t"+TCF);

 System.out.println("FP count for Average\t"+FP);

 break;

 case 3:

 UFC=6*A+7*B+6*C+15*D+10*E;

 FP=UFC*TCF;

 System.out.println("\nUFC count for Complex\t"+UFC);

 System.out.println("\nTCF count for Complex\t"+TCF);

 System.out.println("FP count for Complex\t"+FP);

 break;

 case 4:

 System.exit(0);

 break;

 default:

 System.out.println("\nEnter the correct choice");

 }

 }while(ch!=4);

 }

}

Output :-

D:\SMQA>java FunctionPoint

1. Simple 2.Average 3.Complex 4.Exit

Enter your choice:-

1

UFC count for Simple 43.0

TCF count for Simple 0.93

FP count for Simple 39.99

1. Simple 2.Average 3.Complex 4.Exit

Enter your choice:-

2

UFC count for Average 58.0

TCF count for Average 0.93

FP count for Average 53.940000000000005

1. Simple 2.Average 3.Complex 4.Exit

Enter your choice:-

3

UFC count for Complex 85.0

TCF count for Complex 0.93

FP count for Complex 79.05

1. Simple 2.Average 3.Complex 4.Exit

Enter your choice:-

4

D:\SMQA>

Conclusion:-

__

__

Godavari Foundationôs

Godavari College of Engineering, Jalgaon

Department of Computer & I.T.

Lab Manual
Software Metrics & Quality Assurance

Practical No:- ____

 Date:-_________

Name of Student:- ___

Class:-___________ Roll No:-_____

Title : -

__

__

Aim: -

__

__

__

__

Software Requirement: ___

Hardware Requirement:- ___

Theory:-

Steps to Install Jmeter

Step 1) Install Java

Because JMeter is pure Java desktop application, it requires a fully compliant JVM 6 or

higher. You can download and install the latest version of Java SE Development Kit.

Java Platform (JDK)

After installation is finished, you can use the following procedure to check whether Java

JDK is installed successfully in your system

¶ In Window/Linux, go to Terminal

¶ Enter command java -version

If Java runtime environment is installed successfully, you will see the output as figure

below

If nothing displays, please re-install Java SE runtime environment

Step 2) Download Jmeter

As of this writing, the latest version of JMeter is Apache JMeter 2.9.You can download it

Choose the Binaries file (either zip or tgz) to download as shown in figure below

Step 3) Installation

Installation of JMeter is extremely easy and simple. You simply unzip the zip/tar file into

the directory where you want JMeter to be installed. There is no tedious installation

screen to deal with! Simple unzip and you are done!

Once the unzipping is done installation directory structure should look like as figure

below

Given below is the description of the JMeter directories and its importance JMeter

directory contains many files and directory

¶ /bin: Contains JMeter script file for starting JMeter

¶ /docs: JMeter documentation files

¶ /extras: ant related extra files

¶ /lib/: Contains the required Java library for Jmeter

¶ /lib/ext: contains the core jar files for JMeter and the protocols

¶ /lib/junit: JUnit library used for JMeter

¶ /printable_docs

Step 4) Launch JMeter

You can start JMeter in 3 modes

¶ GUI Mode

¶ Server Mode

¶ Command Line Mode

Start JMeter in GUI Mode

If you are using Window, just run the file /bin/jmeter.bat to start JMeter in GUI mode as

shown below

Following figure annotates the various components in the JMeter GUI

 Start JMeter in Server Mode

Server mode is used for distributed testing. This testing works as client-server model. In

this model, JMeter runs on server computer in server mode. On client computer, JMeter

runs in GUI mode.

To start the server mode, you run the bat file bin\jmeter-server.bat as below figure

Start JMeter in command line mode

JMeter in GUI mode consumes much computer memory. For saving resource, you may

choose to run JMeter without the GUI. To do so, use the following command options

 This is a command line example

$jmeter -n -t testPlan.jmx - l log.jtl -H 127.0.0.1 -P 8000

 Additional Packages

Based on your requirement, you will need one or more optional packages listed below.

¶ Java Compiler

 Java Compiler allows developers to build JMeter source code and other JMeter

plugins

¶ SAX XML parser

 SAX is the Simple API for XML, originally a Java-only API. You can use SAX

XML parser as an alternative to XML parser in JMeter

¶ Email Support

 JMeter has extensive Email capabilities. It can send email based on test results

and has a POP3(S)/IMAP(S) sampler. It also has an SMTP sampler.

¶ JDBC driver

 If you want to test database server, you have to install JDBC driver

Use JMeter in Linux

¶ Using JMeter in Linux is the same as in Window; you simply run the following

shell script.

¶ Run the script file jmeter (This file has no extension)- run JMeter (in GUI

mode by default).

¶ Run the script file jmeter-server - start JMeter in server mode (calls JMeter

script with appropriate parameters)

¶ jmeter.sh - very basic JMeter script with no JVM options specified.

¶ mirror -server.sh - runs the JMeter Mirror Server in non-GUI mode

¶ shutdown.sh - Run the Shutdown client to stop a non-GUI instance gracefully

¶ stoptest.sh - Run the Shutdown client to stop a non-GUI instance abruptly

How to Perform performance testinh in Jmeter:

JMeter offers following benefit in Performance testing

 JMeter can be used to test performance of both static resources such as JavaScript

and HTML, as well as dynamic resources, such as JSP, Servlets, and AJAX.

 JMeter can discover maximum number of concurrent users that your website can

handle

 JMeter provides a variety of graphical analyses of performance reports.

JMeter

Performance Testing includes:

 Load Testing: Modeling the expected usage by simulating multiple user access

the web services concurrently.

 Stress Testing: Every web server has a maximum load capacity. When the load

goes beyond the limit, the web server start responding slowly and produce errors. The

purpose of the stress testing is to find the maximum load the web server can handle.

The figure below shows how JMeter simulates the heavy load :

 Create a Performance Test Plan in Jmeter

In this tutorial, we are doing a performance analysis of Google.com for 1000 users

Before testing the performance of target web application, we should determine-

 Normal Load: Average number of users visit your website

 Heavy Load: The maximum number of users visit your website

 What is your target in this test?

Here is the roadmap of this practical example

Step 1) Add Thread Group

 Start JMeter

 Select Test Plan on the tree

 Add Thread Group

Right click on the Test Plan and add a new thread group: Add -> Threads (Users) ->

Thread Group

In Thread Group control panel, enter Thread Properties as following:

 Number of Threads: 100 (Number of users connects to target website: 100)

 Loop Count: 10 (Number of time to execute testing)

 Ramp-Up Period: 10

The Thread Count and The Loop Counts are different.

Ramp-Up Period tells JMeter how long to delay before starting next user. For example, if we

have 100 users and a 100 second Ramp-Up period, then the delay between starting users would

be 1 second (100 users /100 seconds)

Step 2) Adding JMeter elements

Now we determine what JMeter elements in this test. The elements are

 HTTP request Default

This element can be added by right-clicking on the Thread Group and selecting: Add ->

Config Element -> HTTP Request Defaults.

In the HTTP Request Defaults control panel, enter the Website name under test

 HTTP Request

Right-click on Thread Group and select: Add -> Sampler -> HTTP Request.

In HTTP Request Control Panel, the Path field indicates which URL request you want to

send to Google server.

For example, if you enter "calendar" in Path field. JMeter will create the URL request

http://www.google.com/calendar to Google server

 If you keep the Path field blank JMeter will create the URL request

http://www.google.com to Google server.

In this test, you keep the Path field blank to make JMeter create the URL request

http://www.google.com to Google server.

Step 3) Adding Graph result

JMeter can show the test result in Graph format.

Right click Test Plan, Add -> Listener -> Graph Results

Step 4) Run Test and get the test result

Press Run button (Ctrl + R) on Toolbar to start the testing process. You will see the test

result display on Graph at the real time.

The picture below presents a graph of a test plan, where we simulated 100 users who

accessed on website www.google.com.

At the bottom of the picture, there are the following statistics, represented in colors:

 Black: The total number of current samples sent.

 Blue: The current average of all samples sent.

 Red: The current standard deviation.

 Green: Throughput rate that represents the number of requests per minute the

server handled

Let analyze the performance of Google server in below figure.

 To analyze the performance of the web server under test, you should focus on 2

parameters

 Throughput

 Deviation

The Throughput is the most important parameter. It represents the ability of the server to

handle heavy load. The higher the Throughput is, the better is the server performance.

In this test, the throughput of Google server is 1,491.193/minute. It means Google server

can handle 1,491.193 requests per minute. This value is quiet high so we can conclude

that Google server has good performance

The deviation is shown in red - it indicates th e deviation from the average. The smaller

the better.

Let compare the performance of Google server to other web server. This is the

performance test result of website http://www.yahoo.com/ (You can choose other

website)

The throughput of website under test http://www.yahoo.com is 867.326/minutes. It means

this server handle 867.326 requests per minute, lower than Google.

The deviation is 2689, much higher than Google (577). So we can determine the

performance of this website is less than Google server.

NOTE: The above values depend on several factors like current server load at google ,

your internet speed, your CPU power etc. Hence, it's very unlikely that you will get the

same results as above. So don't panic!

Troubleshooting:

If you face the issue while running the above scenario ... do the following

 Check whether you are connecting to internet via a proxy. If yes, remove the

proxy.

 Open a new instance of Jmeter

 Open the PerformanceTestPlan.jmx in Jmeter

 Double Click on Thread Group -> Graph Result

 Run the Test

Snapshots

